66 research outputs found

    High Performance Lyot and PIAA Coronagraphy for Arbitrarily shaped Telescope Apertures

    Full text link
    Two high performance coronagraphic approaches compatible with segmented and obstructed telescope pupils are described. Both concepts use entrance pupil amplitude apodization and a combined phase and amplitude focal plane mask to achieve full coronagraphic extinction of an on-axis point source. While the first concept, named Apodized Pupil Complex Mask Lyot Coronagraph (APCMLC), relies on a transmission mask to perform the pupil apodization, the second concept, named Phase-Induced Amplitude Apodization complex mask coronagraph (PIAACMC), uses beam remapping for lossless apodization. Both concepts theoretically offer complete coronagraphic extinction (infinite contrast) of a point source in monochromatic light, with high throughput and sub-lambda/D inner working angle, regardless of aperture shape. The PIAACMC offers nearly 100% throughput and approaches the fundamental coronagraph performance limit imposed by first principles. The steps toward designing the coronagraphs for arbitrary apertures are described for monochromatic light. Designs for the APCMLC and the higher performance PIAACMC are shown for several monolith and segmented apertures, such as the apertures of the Subaru Telescope, Giant Magellan Telescope (GMT), Thirty Meter Telescope (TMT), the European Extremely Large Telescope (E-ELT) and the Large Binocular Telescope (LBT). Performance in broadband light is also quantified, suggesting that the monochromatic designs are suitable for use in up to 20% wide spectral bands for ground-based telescopes.Comment: 19 pages, 12 figures, accepted for publication in Ap

    An apodizing phase plate coronagraph for VLT/NACO

    Full text link
    We describe a coronagraphic optic for use with CONICA at the VLT that provides suppression of diffraction from 1.8 to 7 lambda/D at 4.05 microns, an optimal wavelength for direct imaging of cool extrasolar planets. The optic is designed to provide 10 magnitudes of contrast at 0.2 arcseconds, over a D-shaped region in the image plane, without the need for any focal plane occulting mask.Comment: 9 pages, 5 figures, to appear in Proc. SPIE Vol. 773

    The Exozodiacal Dust Problem for Direct Observations of ExoEarths

    Get PDF
    Debris dust in the habitable zones of stars - otherwise known as exozodiacal dust - comes from extrasolar asteroids and comets and is thus an expected part of a planetary system. Background flux from the Solar System's zodiacal dust and the exozodiacal dust in the target system is likely to be the largest source of astrophysical noise in direct observations of terrestrial planets in the habitable zones of nearby stars. Furthermore, dust structures like clumps, thought to be produced by dynamical interactions with exoplanets, are a possible source of confusion. In this paper, we qualitatively assess the primary impact of exozodical dust on high-contrast direct imaging at optical wavelengths, such as would be performed with a coronagraph. Then we present the sensitivity of previous, current, and near-term facilities to thermal emission from debris dust at all distances from nearby solar-type stars, as well as our current knowledge of dust levels from recent surveys. Finally, we address the other method of detecting debris dust, through high-contrast imaging in scattered light. This method is currently far less sensitive than thermal emission observations, but provides high spatial resolution for studying dust structures. This paper represents the first report of NASA's Exoplanet Exploration Program Analysis Group (ExoPAG).Comment: 21 pages, 5 figures, 2 tables. Accepted for publication in PASP 2012-06-0

    Does the Debris Disk around HD 32297 Contain Cometary Grains?

    Full text link
    We present an adaptive optics imaging detection of the HD 32297 debris disk at L' (3.8 \microns) obtained with the LBTI/LMIRcam infrared instrument at the LBT. The disk is detected at signal-to-noise per resolution element ~ 3-7.5 from ~ 0.3-1.1" (30-120 AU). The disk at L' is bowed, as was seen at shorter wavelengths. This likely indicates the disk is not perfectly edge-on and contains highly forward scattering grains. Interior to ~ 50 AU, the surface brightness at L' rises sharply on both sides of the disk, which was also previously seen at Ks band. This evidence together points to the disk containing a second inner component located at ≲\lesssim 50 AU. Comparing the color of the outer (50 <r< r/AU <120< 120) portion of the disk at L' with archival HST/NICMOS images of the disk at 1-2 \microns allows us to test the recently proposed cometary grains model of Donaldson et al. 2013. We find that the model fails to match the disk's surface brightness and spectrum simultaneously (reduced chi-square = 17.9). When we modify the density distribution of the model disk, we obtain a better overall fit (reduced chi-square = 2.9). The best fit to all of the data is a pure water ice model (reduced chi-square = 1.06), but additional resolved imaging at 3.1 \microns is necessary to constrain how much (if any) water ice exists in the disk, which can then help refine the originally proposed cometary grains model.Comment: Accepted to ApJ January 13, 2014. 12 pages (emulateapj style), 9 figures, 1 tabl

    On the Morphology and Chemical Composition of the HR 4796A Debris Disk

    Get PDF
    [abridged] We present resolved images of the HR 4796A debris disk using the Magellan adaptive optics system paired with Clio-2 and VisAO. We detect the disk at 0.77 \microns, 0.91 \microns, 0.99 \microns, 2.15 \microns, 3.1 \microns, 3.3 \microns, and 3.8 \microns. We find that the deprojected center of the ring is offset from the star by 4.76±\pm1.6 AU and that the deprojected eccentricity is 0.06±\pm0.02, in general agreement with previous studies. We find that the average width of the ring is 14−2+3^{+3}_{-2}%, also comparable to previous measurements. Such a narrow ring precludes the existence of shepherding planets more massive than \about 4 \mj, comparable to hot-start planets we could have detected beyond \about 60 AU in projected separation. Combining our new scattered light data with archival HST/STIS and HST/NICMOS data at \about 0.5-2 \microns, along with previously unpublished Spitzer/MIPS thermal emission data and all other literature thermal data, we set out to constrain the chemical composition of the dust grains. After testing 19 individual root compositions and more than 8,400 unique mixtures of these compositions, we find that good fits to the scattered light alone and thermal emission alone are discrepant, suggesting that caution should be exercised if fitting to only one or the other. When we fit to both the scattered light and thermal emission simultaneously, we find mediocre fits (reduced chi-square \about 2). In general, however, we find that silicates and organics are the most favored, and that water ice is usually not favored. These results suggest that the common constituents of both interstellar dust and solar system comets also may reside around HR 4796A, though improved modeling is necessary to place better constraints on the exact chemical composition of the dust.Comment: Accepted to ApJ on October 27, 2014. 21 pages, 12 figures, 4 table

    Albedo and Reflection Spectra of Extrasolar Giant Planets

    Full text link
    We generate theoretical albedo and reflection spectra for a full range of extrasolar giant planet (EGP) models, from Jovian to 51-Pegasi class objects. Our albedo modeling utilizes the latest atomic and molecular cross sections, a Mie theory treatment of extinction by condensates, a variety of particle size distributions, and an extension of the Feautrier radiative transfer method which allows for a general treatment of the scattering phase function. We find that due to qualitative similarities in the compositions and spectra of objects within each of five broad effective temperature ranges, it is natural to establish five representative EGP albedo classes: a ``Jovian'' class (Teff≲150_{\rm eff} \lesssim 150 K; Class I) with tropospheric ammonia clouds, a ``water cloud'' class (Teff∼250_{\rm eff} \sim 250 K; Class II) primarily affected by condensed H2_2O, a ``clear'' class (Teff≳350_{\rm eff} \gtrsim 350 K; Class III) which lacks clouds, and two high-temperature classes: Class IV (900 K ≲\lesssim Teff_{\rm{eff}} ≲\lesssim 1500 K) for which alkali metal absorption predominates, and Class V (Teff_{\rm{eff}} ≳\gtrsim 1500 K and/or low surface gravity (≲\lesssim 103^3 cm s−2^{-2})) for which a high silicate layer shields a significant fraction of the incident radiation from alkali metal and molecular absorption. The resonance lines of sodium and potassium are expected to be salient features in the reflection spectra of Class III, IV, and V objects. We derive Bond albedos and effective temperatures for the full set of known EGPs and explore the possible effects of non-equilibrium condensed products of photolysis above or within principal cloud decks. As in Jupiter, such species can lower the UV/blue albedo substantially, even if present in relatively small mixing ratios.Comment: revised LaTeX manuscript accepted to Ap.J.; also available at http://jupiter.as.arizona.edu/~burrows/paper

    Exo-zodi Modeling for the Large Binocular Telescope Interferometer

    Get PDF
    Habitable zone dust levels are a key unknown that must be understood to ensure the success of future space missions to image Earth analogs around nearby stars. Current detection limits are several orders of magnitude above the level of the solar system's zodiacal cloud, so characterization of the brightness distribution of exo-zodi down to much fainter levels is needed. To this end, the Large Binocular Telescope Interferometer (LBTI) will detect thermal emission from habitable zone exo-zodi a few times brighter than solar system levels. Here we present a modeling framework for interpreting LBTI observations, which yields dust levels from detections and upper limits that are then converted into predictions and upper limits for the scattered light surface brightness. We apply this model to the HOSTS survey sample of nearby stars; assuming a null depth uncertainty of 10^(–4) the LBTI will be sensitive to dust a few times above the solar system level around Sun-like stars, and to even lower dust levels for more massive stars
    • …
    corecore